Antonio **Pucciarelli**

AERONAUTICAL ENGINEER

Milan · Italy

🛛 (+39) 3426310876 | 🔄 antonio.pucc@gmail.com | 🖀 antoniopucciarelli.github.io | 🖸 antoniopucciarelli | 🛅 Antonio Pucciarelli

Summary ____

Highly motivated aeronautical engineer with a strong foundation in fluid dynamics and a passion for innovation. Leveraged my MSc studies to specialize in CFD, turbomachinery design, and flow modeling. Proficient in coding, software development, machine learning, and GUI creation, expanding my skillset beyond traditional engineering.

Developed a novel machine learning method for turbomachinery design during a training program at the prestigious von Karman Institute for fluid dynamics. Currently extending this method to create a universal design tool applicable across a wider range of turbomachines. Eager to contribute my skills and enthusiasm to the aeronautical and naval field, with interests spanning external flow simulations, aeroelasticity, and turbomachinery.

Education_____

von Karman Institute for Fluid Dynamics SHORT TRAINING PROGRAM · TURBOMACHINERY & MACHINE LEARNING	Sint-Genesius-Rode, Belgium 2022 - 2023
Politecnico di Milano Master Degree in Aeronautical Engineering · Aerodynamics & Propulsion Track Bacherlor Degree in Aerospace Engineering	Milano, Italy 2021 - 2023 2017 - 2020
Experience	
 turbOpt • von Karman Institute for Fluid Dynamics INTERN • AERONAUTICAL ENGINEER & SOFTWARE DEVELOPER • von Karman Institute in-house program (developed from scratch) • Machine learning adapted to turbomachinery blades 	Sint-Genesius-Rode, Belgium Oct 2022 - Apr 2023
 blader RESEARCHER · AERONAUTICAL ENGINEER & SOFTWARE DEVELOPER Novelty program for the representation and parametrization of turbomachinery blades GUI generation for user-friendlyness 	Salerno, Italy Oct 2023 - Jan 2024
 datablade • Private & von Karman Institute for Fluid Dynamics RESEARCHER • AERONAUTICAL ENGINEER & SOFTWARE DEVELOPER Improvements over turbOpt program Extension of the study domain to a wider range of turbine blades (including LP turbines GUI generation for user-friendlyness 	Salerno, Italy Oct 2023 - present

Writing_

- --

Paper Publi	C	ation • In Progress	
Researcher	•	von Karman Institute for Fluid Dynamics	

A Novel Machine Learning Method for Data-Driven Design in Turbomachinery (co-authored with *Prof. Sergio Lavagnoli*). To be submitted to **Elsevier**. This paper details the development and application of a machine learning program for turbomachinery design, extending the concepts explored in my thesis work.

Skills ____

ProgrammingPython, Fortran, C/C++, Matlab, & K, CMake, GNUplotProgramsOpenFOAM, MISES, NASTRAN, openscad, xFOIL, NASA CEA, xflr5, Femap, SolidWorks, SolidEdge, Inventor

Sint-Genesius-Rode, Belgium

Oct 2023 - present

Languages_____

Italian	Native
English	Full Proficiency · writing, speaking, listening
Norwegian	In Progress · self-learning

Projects_____

-	
datablade Private Project	Salerno, Italy Oct 2023 - present
 Continuation of my MSc thesis work Extention of the capabilities of the program to LPT and compressors Accuracy improvements over blade predictions GUI generation 	
blader	Salerno, Italy
Private Project	Oct 2023 - Jan 2024
 Coordinate based blade converter into Kulfan parametrization representation Blade parametrization DOF reduction GUI generation 	
Machine Learning for Turbomachinery $ \cdot $ Master Thesis	Sint-Genesius-Rode, Belgium
Short Training Program \cdot von Karman Institute for Fluid Dynamics	Oct 2022 - Nov 2022 Feb 2023 - Apr 2023
 von Karman Institute in-house program (developed from scratch) 	1002020 11012020
 2D airfoil database generation Machine learning adapted to turbomachinery blades 	
Aerospace Control Systems	Milano, Italy
https://github.com/antoniopucciarelli/controlPRJ	
CONTROL DYNAMICS	May 2022 - Jun 2022
 System dynamics study Stability analysis 	
 System uncertainties analysis 	
– Controllers design	
Liquid Rocket Engine: Design, Analysis and Simulation	Milana Italy
https://antoniopucciarelli.github.io/assets/pdf/ spacePropulsionPRJ.pdf	Milano, Italy
Spacecraft Propulsion	May 2022 - May 2022
- Tanks, combustion chamber and nozzle design	
 Unsteady firing simulation with NASA CEA wrapping Monte Carlo analysis of the thrust with respect to the uncertainties related to the 	e manufacturing process
Solid Rocket Motor: Firing Test Data Analysis and Simulation	
https://github.com/antoniopucciarelli/spacePropulsionFlipped	Salerno, Italy
SPACECRAFT PROPULSION	Apr 2022 - May 2022
 Vieille's law computation from firing test pressure traces Ballistic simulation of a solid rocket engine with different nozzles Monte Carlo analysis of the firing time with respect to the uncertainties on the Vi 	eille's law
Axial Compressor Preliminary Design	
https://github.com/antoniopucciarelli/turboLIB	Salerno, Italy
TURBOMACHINERY	Mar 2022 - May 2022
 Mean line design Pressure losses modeling 	
 Non isentropic radial equilibrium study 	
 3D blade shape design Python library – turboLIB 	

Combustion Chamber Modeling https://github.com/antoniopucciarelli/CFDprj	Milano, Ital
CFD · Fluid Dynamics & Combustion Modeling	Oct 2021 - Jan 202
 2D & 3D analysis of an hydrocarbon combustion in a combustion chamber using the f Unsteady compressible reactive simulation in OpenFOAM Finite volume method analysis of the problem: topology, solution procedure and solv Spray modeling in a finite volume method code Wall surface analysis in a finite volume method code Turbulence modeling 	
EnelX Value Proposition: Sketch, Analysis and Validation	Milano, Ital
<pre>ittps://antoniopucciarelli.github.io/assets/pdf/HTSprj.pdf High-Tech Startup</pre>	
 Value proposition generation Validation of the value proposition and business model 	Sep 2021 - Jan 202.
njector Study and Liquid Jet Break Up in Liquid Rocket Engines	Milano Ital
nttps://antoniopucciarelli.github.io/assets/pdf/LRE.pdf	Milano, Ital
COMBUSTION	May 2021 - Jun 202
 Liquid rocket engine analysis Liquid jet break-up qualitative analysis and implication in the combustion chamber 	
Neissinger Method: Study, Analysis and Coding	Milano, Ital
<pre>https://github.com/antoniopucciarelli/aeroWEISS Aerodynamics</pre>	Dec 2020 - Jan 202
 Incompressible study of the flow over 3D wings using a horseshoe vortex based method Analysis of the 3D drag on a wing for a potential flow Ground effect study Matlab program – aeroWEISS 	
Hess-Smith Method: Study, Analysis and Coding	Milano, Ital
nttps://github.com/antoniopucciarelli/aeroHS	
 AERODYNAMICS Potential flow study using the Hess-Smith model based on vortex/sources/sinks distri Analysis of the interaction between two airfoils in tandem Ground effect analysis Fortran program – aeroHS 	Jun 2020 - Jan 202 ibution over an airfoil
Satellite Orbital Transfer Analysis	N #*1 11 1
https://antoniopucciarelli.github.io/assets/pdf/IAMSprj.pdf	Milano, Ital
 Study and generation of three orbital transfers for a satellite Comparison the three sketched orbital maneuver 	May 2020 - Jun 202
Canard Wing: Modeling and Analysis	Milano, Ital
Structural Dynamics	May 2020 - Jun 202
 Canard wing mesh generation and load application in FEMAP Results computation using NASTRAN Static analysis under loading Free modes analysis 	
RL10-A33A: Modeling, Study and Analysis	
https://antoniopucciarelli.github.io/assets/pdf/RL10.pdf https://github.com/antoniopucciarelli/NHE	Milano, Ital
Aerospace Propulsion	Nov 2019 - Jun 202
 Analysis and reverse engineering design of the Pratt & Whitney liquid rocket engine 1D heat exchange simulation of the nozzle in Matlab – NHE 	