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1. Introduction
In the field of turbomachinery design, current
models are often slow, repetitive, and heav-
ily reliant on computer simulations, often over-
looking valuable existing knowledge [1]. This
work introduces a groundbreaking methodol-
ogy that seamlessly integrates machine learning
techniques into the blade design process.

2. Significance and Objectives
The primary significance of this work lies in its
potential to revolutionize turbomachinery de-
sign by eliminating the need for time-consuming
CFD simulations. It provides designers with a
clear understanding of blade loading limits and
the intricate correlations between loading dis-
tribution and blade geometry, thereby shedding
light on important physical limitations in the de-
sign process.

2.1. Efficiency Enhancement
By harnessing machine learning, this research fa-
cilitates a quicker and more autonomous blade
design process, breaking free from the con-
straints of lengthy simulations and conserving
both time and resources.

2.2. In-Depth Understanding
This work offers designers profound insights into
blade loading limits, emphasizing the signifi-
cance of making data-driven design decisions.

2.3. Data Processing
The study elucidates the process of data collec-
tion and analysis, providing clarity on the in-
tegration of artificial intelligence into turboma-
chinery design.

3. Practical Implications
This research not only introduces a novel ap-
proach to turbomachinery blade design but also
lays the foundation for more effective design
strategies. It empowers designers with tools to
optimize efficiency and accuracy in the design
process.

4. Problem Framing
The following sections provide a summary of the
work. The work aims to generate a database,
which will then be utilized by a machine learn-
ing algorithm for the generation of a mathemat-
ical function, f̂ , that facilitates blade design [2].
This design function, f̂ , takes as input a desired
loading distribution and a desired flow deflection
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made by the blade, and it outputs the blade ge-
ometry that achieves this flow behavior. This
research begins by framing the problem effec-
tively.

4.1. Dimensionality
Due to the multidimensional characteristics of
the problem, it is necessary to reduce the field
of study to its minimum extent [1]. Dimension-
ality reduction enables the use of fewer parame-
ters for problem description and provides better
control over important correlations between flow
properties and geometric features in the dataset.

4.1.1 Macroscopic Flow Properties

A way of describing the macroscopic working
conditions of the flow is to define:

• α1 : inlet flow angle
• α2 : outlet flow angle
• M2 : outlet Mach number
• Re: Reynolds number of the flow

These four parameters, represented in Figure 1,
are the minimum requirements for the definition
of a working condition or duty of the blade. As
a result, these parameters will be identified as
the aerodynamic duty of the blade.

Re

M2

α1

α2

Figure 1: Aerodynamic duty parameters.

4.1.2 Local Flow Properties

The loading distribution is defined by the surface
fraction, S

STOT
, and the Mach fraction number,

M
MTE

. The load distribution is determined using
the surface fraction, S

STOT
, instead of the chord

because it provides a better definition of the lo-
cal loading distribution in critical regions, such

as the leading edge, and has a more direct cor-
relation with boundary layer behavior since its
properties are defined by the path length trav-
eled by the flow.
The loading distribution is parametrized by:
• Leading edge Mach fraction (MLE): Defines

the load at the leading edge on the suction
side of the blade.

• Peak Mach fraction (MPEAK): Represents
the highest Mach value over the blade,
found on the suction side.

• Pressure Mach number (MPRESS): Pro-
vides a dual descriptor, indicating the lead-
ing edge load on the suction side and the
Mach fraction before it rises to reach the
trailing edge on the pressure side.

• Surface fraction position (SPEAK): Identi-
fies the position where the peak Mach frac-
tion is located along the load distribution.

These parameters are crucial in defining the lo-
cal load distribution along the blade. The load-
ing distribution is constructed using a set of
Bezier splines controlled by the parameters men-
tioned above.

Trial & Error Because the many possible
loading distributions. A large investigation was
made on suitable loading patterns. These pat-
ters are the ones which guarantee a geometry
which fullfils the macroscopic and local flow
properties [1]. The reason of this investigation
relies on the fact that the database has to con-
tain only information which are useful for the
aim of the work. Studying a loading distribution
which does not have any geometry associated to
the target loading distribution, it is completely
unnecessary. Fine-tuning the blade’s loading
distribution is crucial to meeting both manu-
facturing requirements and aerodynamic style
constraints. A trial-and-error approach, particu-
larly at the leading edge, enhances blade conver-
gence and exit flow angle prediction, optimizing
results while considering manufacturing limita-
tions.
Figure 2, Figure 3, Figure 4 and Figure 5 repre-
sent all the possible loading variation.

4.1.3 Blade Geometry

The blade geometry - consisting of the camber-
line, suction side and pressure side - is defined
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through meticulous parametrization, following
Kulfan’s approach.
The camberline is parameterized by the stagger

γ χ1 χ2 β

+32.00◦ -42.00◦ +70.00◦ +25.00◦

0.00 0.25 0.50 0.75 1.00
x

−0.4

−0.2

0.0

0.2

0.4

0.6

y

ASS

A00 = 0.15
A01 = 0.33
A02 = 0.35
A03 = 0.40
A04 = 0.49

APS

A00 = 0.15
A01 = 0.28
A02 = 0.35
A03 = 0.30
A04 = 0.49

APS

A00 = 0.15
A01 = 0.28
A02 = 0.35
A03 = 0.30
A04 = 0.49

Figure 6: Kulfan parametrized blade.
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Figure 7: Figure 6 scaled blade with a higher
parametrization.

angle (γ), the metal inlet angle (χ1), and the
metal outlet angle (χ2). The suction side and
the pressure side of the blade are defined using
a set of N parameters, Ai. Scaling a blade can
be accomplished using additional parameters by
solving a linear system of equations.
Kulfan’s parametrization [3] preserves critical
geometric properties, including the leading-edge
radius (RLE) and the trailing-edge angle (β),
which have a significant impact on blade char-
acteristics and flow properties.
Figure 6 and Figure 7 show the Kulfan
parametrized blade and the same blade scaled
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with a higher parametrization.

4.2. Database Generation
The database is created using an in-house code
designed for blade optimization and analysis, ap-
propriately named datablade. The program’s
structure is modular, enabling flexible combina-
tions of blocks tailored to specific objectives.

4.2.1 Configuration File

datablade optimization relies on a configuration
file, formatted in .json for enhanced readability
and ease of use. This file serves as the blueprint
for blade optimization, initializing parameters
such as the initial guess for blade geometry, ge-
ometrical constraints setup, and loading proper-
ties.

4.2.2 Optimization

The blade optimization plays a pivotal role, em-
ploying a classic gradient-free method known as
the Simplex method. This method, while seek-
ing local minima, delivers satisfactory results
when guided by suitable initial guesses, dimen-
sionality adaptation strategies, and a robust cost
function.

Dimensionality Adaptation Optimizing
blades involves solving multidimensional op-
timization problems with complex solutions.
datablade adopts an intelligent strategy that
adjusts the problem’s dimensionality. Initially,
optimization commences with fewer parameters
to reduce the design space. As convergence is
achieved, the degree of freedom is incremen-
tally increased, leading to improved solutions.
Empirical tests have validated this approach,
demonstrating its effectiveness in constructing
the database.

Cost Function The core of blade optimiza-
tion revolves around the management of two key
errors: load distribution and flow exit angle.
These errors are quantified using the root mean
squared error (RMSE) and the flow exit angle
error (∆α2). The cost function, which combines
these properties, sets criteria for optimization
convergence and establishes acceptance thresh-
olds for optimized blades. The function balances
the significance of the angle error (∆α2) relative

to RMSE through the use of scaling and thresh-
old values.

RMSE =

√√√√ 1

N
·

N∑
i=1

(
Mreal

MTE,real

∣∣∣∣∣
i

− Mtarget

MTE,target

∣∣∣∣∣
i

)2

∆α2 =
∣∣∣α2,real − α2,target

∣∣∣
cost = RMSE ·

[
1 + 0.04 ·

(
max

(
0, ∆α2 − 1.0

))2.0]
(1)

(2)

(3)

4.2.3 Optimizer

The datablade optimizer combines the capabil-
ities of the MISES software [4] for flow proper-
ties computation with the scipy module using
the Simplex method [5], providing robust per-
formance and efficiency.

4.2.4 Domain

Table 1: Domain boundaries and discretization.

Variable Min Max Points

α1 −50◦ −20◦ 3

α2 65◦ 72.5◦ 4

M2 0.4 0.7 3

Re 6 · 105 6 · 105 1

MP
MTE

1.2 1.4 3

LP
Lsurf

0.5 0.6 3

MLE
MTE

M2
M1

1.2 1.8 3

MPS
MTE

M2
M1,ax

0.8 1.2 3

The database is created by optimizing blades
with different aerodynamic styles and aerody-
namic duty properties. The dataset points are
presented in Table 1.
For the high-pressure turbine study, a fixed
Reynolds number (Re = 6 × 105) is employed
due to the Reynolds independence of the flow
under investigation.
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An innovative optimization strategy unfolds as
an additional acceleration layer for computing
the initial guess (x0) used in the optimizer. This
strategy involves linearizing the inner domain
using data from outer domain points. The outer
points are optimized first to provide a suitable
initial guess for inner domain points, thereby
streamlining the overall convergence speed of the
database [1].

Outer Points Generating the corner points
of the domain is the initial and time-consuming
step in database creation. These corner points
serve as a foundation, expediting the optimiza-
tion process for inner domain points. datablade
optimizes 128 blades to establish these corner
points.
Figure 8 illustrates the boundary points of the
study domain.
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Figure 8: Linear interpolation of the stagger an-
gle, γ, with respect to α1 and α2 from the corner
points in red.

Inner Points After generating the corner
points, the initial guess for inner points, denoted
as x0, is computed using linear interpolation.
This method simplifies the estimation of blade
parameters across the entire inner domain. A
total of 2916 blades will undergo optimization
for inner points, culminating in the creation of
the comprehensive database.

Figure 9 displays the initial guess, γ, obtained
through linear interpolation of the domain.
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Figure 9: Complete γ variation with respect to
α1 & α2. Corner points in red and inner points
in black.

4.2.5 Optimized Data

Table 2: Data properties inside the optimized
database.

count µ σ min max

cost 2916 0.01 0.006 0.005 0.04

∆α2 2916 0.96◦ 0.542◦ 0.0003◦2.37◦

The database contains Kulfan’s parameters that
define blade geometry. Key blades of interest
for initial analysis are categorized based on their
loading distribution and exit flow angle errors:
• Blades with low errors in both the loading

distribution and the exit flow angle. Fig-
ure 10 illustrates this blade setup.

• Blades with low errors in the loading distri-
bution but high errors in the exit flow angle.
Figure 11 represents this blade behavior.

• Blades with high errors in both the loading
distribution and the exit flow angle. Fig-
ure 12 depicts this blade family.
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Figure 10: Blade with good performances on the
load distribution and on the exit angle error.
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Figure 11: Blade with good performances on the
load distribution but low performance on the
exit angle error.
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Figure 12: Blade with poor performances on the
load distribution and on the exit angle error.

Table 2 provides an overview of the complete
database after optimization, showcasing accept-
able mean values for cost and ∆α2. A significant

portion of the blades demonstrates a cost below
2.75%, indicating convergence towards the de-
sired aerodynamic style. However, it is worth
noting that over 25% of the database exhibits
an exit flow angle error, ∆α2, exceeding 1◦, un-
derscoring the need for correction.
Some blades perform poorly and are excluded
from the machine learning analysis due to signifi-
cant discrepancies in loading distribution. These
blades lack correlation with the desired aerody-
namic style.

4.2.6 Error Distribution

Certain blades within the database exhibit
significant errors in the loading distribution
(RMSE). These infeasible designs, character-
ized by erroneous input data, cannot be rectified
by machine learning algorithms. As a result, in-
feasible designs are excluded from the database
to ensure the availability of meaningful data for
interpolation. A threshold of 2.75% is used as
filter for refining the database.
Figure 13 and Figure 14 illustrate the error dis-
tribution on a slice of the domain.
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Figure 13: cost distribution.

4.2.7 Filtering

To refine the database for interpolation pur-
poses, data filtering is implemented. Blades with
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Figure 14: ∆α2 behavior in the domain.

unacceptable errors in blade loading are omit-
ted, resulting in a slight reduction in the dataset.
The infeasible designs are typically located at
the domain boundaries, justifying their exclu-
sion. The filtering process primarily relies on
the blade’s cost properties, as it predominantly
reflects the RMSE.
Blades with low RMSE but high ∆α2 will be
subsequently filtered numerically by the ma-
chine learning algorithm through a correction of
the blade design function, f̂ .
Table 3 displays the database properties follow-
ing the filtering operation.

Table 3: Data properties inside the optimized
database.

count µ σ min max

cost 2787 0.015 0.004 0.005 0.027

∆α2 2787 0.846◦ 0.421◦ 0.001◦ 2.373◦

5. Machine Learning
The heart of the machine learning algorithm is
constructed upon regression techniques, specif-
ically tailored for domain interpolation. This
algorithm excels in the remarkable task of pre-
dicting blade geometries based on inputs of aero-

dynamic duty and aerodynamic style, mirroring
the parameterization of the database’s blades.
The domains of study are as follows:
• X : This dataset stores the aerodynamic

style and aerodynamic duty properties, or-
ganized as X ∈ R2787×8, representing 2787
filtered blades and 8 parameters responsible
for defining the aerodynamic style and duty.
The x vector holds the aerodynamic style
and aerodynamic duty of the blade and is a
general element within X .

• Y: This dataset stores the camberline and
Kulfan parameters, essential for character-
izing each blade. It is structured as Y ∈
R2787×42, indicating 2787 blades and 42 pa-
rameters, including Kulfan parameters and
pitch. The y vector encompasses the blade
geometry properties and is a general ele-
ment within Y.

The machine learning algorithm is tasked with
approximating a mapping function, f , which
bridges the two domains, X and Y, as depicted
in Equation 4.
The subsequent endeavor revolves around com-
puting f̂ , a numerical approximation of f . This
new function, f̂ , plays a pivotal role in defining
the underlying problem.

f(x) = y

f̂(x) ≈ y

(4)

(5)

5.1. Radial Basis Function
To achieve the research goals, the selection of a
suitable regression algorithm is crucial. In this
study, radial basis functions (RBFs) are chosen
as the kernel for the machine learning model.
RBFs, known for their robustness, prove to be
a powerful tool for data interpolation [6]. They
effectively handle overfitting issues and enable
perfect interpolation of training points (x∗,y∗).
The kernel relies on parameters such as length
scale and the Euclidean norm between domain
points, which contribute to its effectiveness in
minimizing the influence of distant data points.
The utilization of Gaussian functions to approx-
imate the domain is another significant aspect,
ensuring the smooth transition of geometrical
properties of the blade, including camberline
and Kulfan parameters.
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5.2. Training & Testing
With the foundational elements in place, the
work progresses to establish a system for com-
puting f̂ . This system is characterized by a lin-
ear system of equations, representing linear com-
binations of radial basis functions. These equa-
tions are weighted by parameters referred to as
weights, denoted as w, which are essential for
fitting the radial basis functions to the database.
Once w is computed, the chapter delves into
evaluating the quality of weights using the test
set (X ∗∗,Y∗∗).
Figure 15, Figure 16, and Figure 17 display
blades generated from f̂ . It can be observed
that the error in RMSE consistently remains
below 3 · 10−2, and ∆α2 is consistently lower
than 0.5◦. These results are deemed acceptable
for the purpose of the design tool generated by
this work.
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Figure 15: Blade generated by f̂ with α1 =
−34.04◦, α2 = 70.15◦ and M2 = 0.57.
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Figure 16: Blade generated by f̂ with α1 =
−49.16◦, α2 = 65.16◦ and M2 = 0.67.
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Figure 17: Blade generated by f̂ with α1 =
−20.07◦, α2 = 65.16◦ and M2 = 0.60.

6. PCA
The work introduces Principal Component
Analysis (PCA) as a robust technique for sim-
plifying complex datasets [6]. In this context,
PCA operates solely on the Y dataset.
PCA commences with a comprehensive analysis
of correlations among various blade parameters:
• γ, χ1, and χ2 for camberline
• Asuct for suction-side parametrization
• Apress for pressure-side parametrization
• Pitch

This analysis uncovers the principal correlation
directions, essentially representing the eigenvec-
tors that define the Y dataset. Subsequently, the
analysis computes additional modal directions,
each signifying the dataset’s coverage impor-
tance, with higher variance equating to broader
coverage.
Notably, the work demonstrates that only three
modes can effectively encompass over 95% of the
entire dataset, as evidenced in Figure 18.

6.1. Modal Analysis
The exploration continues with modal analy-
sis, which reveals the significance of each mode
within the Y dataset. Modal analysis further
refines the research domain, concentrating ex-
clusively on the Y dataset.
Figure 19 introduces the first mode, emphasizing
its substantial influence on camberline variation
and the resulting suction-side load distribution.
Figure 20 delves into the second mode, primar-
ily highlighting blade thickness variation and its
implications on pressure-side load distribution.
Figure 21 unveils the third mode, highlighting
changes in the position of the peak Mach number
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Figure 18: Principal Components of Y dataset.
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Figure 19: Mode No. 1 with the respective
modal loading distribution.

0.0 0.5 1.0
x

−0.5

0.0

0.5

1.0

1.5

y

0.00 0.25 0.50 0.75 1.00
S

STOT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
M

T
E

Mode No. 2

Base Geometry Scaling = 15.0 Scaling = 30.0

Figure 20: Mode No. 2 with the respective
modal loading distribution.

on the suction side and significant alterations in
pressure-side Mach distribution.
Additionally, the research emphasizes distinctive
modes, including the 10th mode, the 30th mode,
and the 42nd mode, each providing unique in-
sights into physical properties.
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Figure 21: Mode No. 3 with the respective
modal loading distribution.

Figure 22 elucidates the impact of the 10th
mode, primarily influencing pitch and subse-
quently altering load distribution over the blade.
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Figure 22: Mode No. 10 with the respective
modal loading distribution.

Figure 23 illustrates the consequences of a low-
variance mode, indicating that avoiding modes
with low variance does not significantly compro-
mise geometry representation accuracy.
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Figure 23: Mode No. 30 with the respective
modal loading distribution.
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Figure 24 introduces the 42nd mode, character-
ized as a wobbling noise around the blade, high-
lighting its minimal importance in the blade do-
main representation.
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Figure 24: Mode No. 42 with the respective
modal loading distribution.

7. Conclusions
7.1. Key Insights and Achievements
The primary achievement of this research lies
in the successful validation of the proposed
methodology. It demonstrates its effectiveness
in blade design, providing both speed and the
capability to deconstruct the design space into
fundamental geometric modes.

7.2. Implications and Significance
These identified modes hold the promise of craft-
ing blades with enhanced efficiency, utilizing a
reduced set of parameters compared to tradi-
tional blade parametrization methods. More-
over, by establishing a tangible correlation be-
tween blade geometry and parametrized load-
ing distribution, the model empowers designers
and imparts a comprehensive understanding of
the turbomachinery design space and its inher-
ent constraints.

7.3. Recognizing Boundaries
It is imperative to acknowledge that the model’s
boundaries are intricately entwined with the
laws of physics. The sensitivity of database gen-
eration to loading parametrization underscores
the model’s intimate connection to the realm of
physics. Furthermore, the quality of the input
database emerges as a pivotal factor that pro-
foundly influences the quality of the resultant

blades. Thus, ensuring a high-quality database
remains a paramount consideration for optimiz-
ing results.

7.4. Forging Pathways Forward
Future research endeavors may explore how
blade geometry evolves in response to variations
in the Reynolds number. Additionally, investi-
gating how blade geometry adapts under diverse
loading conditions holds significant promise for
advancing this innovative methodology.

7.5. Concluding Remarks
The practicality of this model within the indus-
try is evident, as it serves as an initial design
layer for blade generation. By harmoniously in-
tertwining the realms of physics and machine
learning through data integration, it paves the
way for a transformative approach to design-
ing turbomachinery systems. This efficient tool
streamlines the design process, making it acces-
sible to designers from various domains. Its pro-
found significance lies in its ability to reshape
the design landscape, ushering in a faster, more
intuitive era for turbomachinery system design.
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